Abstract
Ultrastructural studies, together with X-ray microanalytical, immunocytochemical and
cytochemical analysis performed in root tips of Al-resistant (C-525 M) and Al-sensitive
(Adour 250, HS 7777 and BR 201 F) maize plants (Zea mays L.), after 96 h exposure to 20 μM Al, showed qualitatively similar results in the
four cultivars.
Al was identified in electron-opaque precipitates, which were insoluble even in EDTA
chelate. They also contained an elevated proportion of P and also of K and Ca, some
traces of Mn, Fe and Zn and sometimes of Mg. This elemental composition is similar
to that described for phytin (Al-phytin), and the precipitates were localized in the
two principal extraplasmatic compartments: cell walls and vacuoles. Al-phytin was
detected in swollen areas of cell walls in membraneous concentric configurations,
resembling myelin figures, probably rich in phosphatidyl inositol, which also intervene
in the vacuolar internalization of Al-phytin and are similar to a peculiar form of
endocytosis (not previously described). Abnormal apoplastic protuberances containing
abundant electron-opaque Al-phytin deposits, agglutinated by callose (immunocytochemically
identified), were shown in cortex cells with high mitotic activity (around 1 - 1.5
mm from cap root). Al-hyperaccumulator cells parallel to the root axis were correlated
with longitudinal lysigenous intercellular spaces after cell death and dissolution
(lysigeny). Indicators of activated lysigeny, as low levels of Al and callose (in
agreement with other authors) and high levels of phosphoinositides, can mark Al-resistant
genotypes, contrary to Al-sensitive genotypes, probably derived from a partially activated
or even inactivated lysigeny.
The lysigeny of Al hyperaccumulator cells constitutes new ultrastructural evidence
of an Al exclusion mechanism, supporting biochemical results reported by other investigators.
Key words
Aluminum - callose - EDAX: energy-dispersive X-ray microanalysis - immunocytochemistry
- lysigeny - phytin -
Zea mays (maize)
References
01
Ashton, F. M..
(1976);
Mobilization of storage proteins of seeds.
Ann. Rev. Plant Physiol..
27
95-117
02
Battey, N. H.,, James, N. C.,, Greenland, A. J.,, and Brownlee, C..
(1999);
Exocytosis and endocytosis.
The Plant Cell.
11
643-659
03 Benes, I., and Metlicka, R.. (1970)
Use of artificial membranes. Cell Membrane Transport, Principles and Techniques. Kotyk, A. and Janacek, K., eds.
New York; Plenum Press pp. 304-305
04 Blumwald, E.,, and Gelli, A.. (1997)
Secondary inorganic ion transport at the tonoplast. The Plant Vacuole; In Advances in Botanical Research . Leigh, R. A. and Sanders,
D., eds.; Callow J. A., ed. California and London; Academic Press pp. 401-413
05
Chang, Y. C.,, Yamamoto, Y.,, and Matsumoto, H..
(1999);
Accumulation of aluminium in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminium and iron.
Plant Cell and Environment.
22
1009-1017
06
Chrispeels, M. J..
(1991);
Sorting of proteins in the secretory system.
Ann. Rev. Plant Physiol. and Plant Mol. Biol..
42
21-53
07
Coté, G. G., and Crain, R. C..
(1993);
Biochemistry of phosphoinositides.
Ann. Rev. Plant Physiol. and Plant Mol. Biol..
44
333-356
08
Davies, K. L.,, Davies, M. S.,, and Francis, D..
(1991);
The influence of an inhibitor of phytochelatin synthesis on root growth and root meristematic
activity in Festuca rubra L. in response to Zinc.
New Phytol..
118
565-570
09 Davis, A. D.,, Weatherby, T. M.,, and Lenz, P. H.. (1999)
Speedy plankton: myelinated axons in calanoid copepods (crustacea). Microscopy and Microanalysis. Bailey, G. W., Jerome, W. G., McKernan, S., Mansfield,
J. F., and Price, R. L., eds. Portland, Oregon; Springer pp. 1308-1309
10
Delhaize, E.,, Ryan, P. R.,, and Randall, P. J..
(1993);
Aluminum tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic acid from root apices.
Plant Physiol..
103
695-702
11
Delhaize, E., and Ryan, P. R..
(1995);
Aluminum toxicity and tolerance in plants.
Plant Physiol..
107
315-321
12
Drew, M. C.,, Jackson, M. B.,, and Giffard, S. C..
(1979);
Ethylene-promoted rooting and development of cortical air-spaces (aerenchyma) in roots
may be adaptive responses to flooding in Zea mays L.
Planta.
147
83-88
13
Drew, M. C..
(1997);
Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia.
Annu. Rev. Plant Physiol. Plant Mol. Biol..
48
223-250
14
Drew, M. C.,, He, C. J.,, and Morgan, P. W..
(2000);
Programmed cell death and aerenchyma formation in roots.
Trends in plant Science.
5 (3)
123-127
15 Drøbak, B. K.. (1996)
Metabolism of plant phosphoinositides and other inositol-containing lipids. Membranes: Specialized Functions in Plants. Smallwood, M., Knox, J. P., and Bowles,
D. J., eds. Oxford; BIOS Scientific Publishers pp. 195-210
16
Eleftheriou, E. P.,, Moustakas, M.,, and Fragiskos, N..
(1993);
Aluminate-induced changes in morphology and ultrastructure of Thinopyrum roots.
J. of Exp. Botany.
44 (259)
427-436
17
Erickson, R. O., and Sax, K. B..
(1956);
Rates of cell division and cell elongation in the growth of the primary root of Zea mays.
.
Proc. Amer. Phil. Soc..
100
499-514
18
Fineran, B. A..
(1971);
Ultrastructure of vacuolar inclusions in root tips.
Protoplasma.
72
1-18
19
Gunsé, B.,, Poschenrieder, C.,, and Barceló, J..
(2000);
The role of ethylene metabolism in the short-term responses to aluminium by roots
of two maize cultivars different in Al-resistance.
Env. and Exp. Botany.
43
73-81
20 Hall, J. L.,, Flowers, T. J.,, and Roberts, R. M.. (1974) Plant cell structure
and metabolism: The golgi body. London; Longman Group Limited pp. 373-396
21
Harvey, D. M. R..
(1982);
Freeze substitution.
J. Microsc..
127
209-221
22 Horst, W. J.,, Asher, C. J.,, Cakmak, J.,, Szulkiewicz, P.,, and Wissemeier,
A. H.. (1991)
Short-term responses of soybean roots to aluminium. Plant-Soil Interactions at Low pH. Wright, R. J., Baligar, V. C., and Murrmann, R.
P., eds. Dordrecht, Boston, London; Kluwer Academic Publishers pp. 733-739
23
Horst, W. J.,, Püschel, A. K.,, and Schmohl, N..
(1997);
Induction of callose formation is a sensitive marker for genotypic aluminium sensitivity
in maize.
Plant Soil.
192
23-30
24 Jost, P.,, Waggoner, A. S.,, and Griffith, O. H.. (1971)
Structure and function of biological membranes. Biological Membranes: An Overview at the Molecular Level. Rothfield, L. I., ed. New
York; Academic Press pp. 83-144
25
Justin, S., and Armstrong, W..
(1987);
The anatomical characteristics of roots and plant response to soil flooding.
New Phytol..
106
465-495
26 Kauss, H.. (1996)
Callose synthesis. Membranes: Specialized Functions in Plants. Smallwood, M., Knox, J. P., and Bowles,
D. J., eds. Oxford; Bios Scientific Publishers pp. 77-89
27
Kochian, L. V..
(1995);
Cellular mechanisms of aluminum toxicity and resistance in plants.
Annu. Rev. Plant Physiol. Plant Mol. Biol..
46
237-260
28
Kollmeier, M.,, Felle, H. H.,, and Horst, W. J..
(2000);
Genotypical differences in aluminum resistance of maize are expressed in the distal
part of the transition zone. Is reduced basipetal auxin flow involved in inhibition
of root elongation by aluminum?.
Plant Physiology.
122
945-956
29
Kollmeier, M.,, Dietrich, P.,, Bauer, C. S.,, Horst, W. J.,, and Hedrich, R..
(2001);
Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone
of the maize root apex. A comparison between an aluminum-sensitive and an aluminum
resistant cultivar.
Plant Physiology.
126
397-410
30
Krotz, R. M.,, Evangelou, B. P.,, and Wagner, G. J..
(1989);
Relationships between cadmium, zinc, Cd-peptide, and organic acid in tobacco suspension
cells.
Plant Physiology.
91
180-187
31
Lazof, D. B.,, Rincon, M.,, Rufty, T. W.,, Mckown, C. T.,, and Carter, T. E..
(1994);
Aluminium accumulation and associated effects on 15 NO3
- influx in roots of two soybean genotypes differing in Al tolerance.
Plant Soil.
164
291-297
32
Lazof, D. B.,, Goldsmith, J. G.,, Rufty, T. W.,, and Linton, R. W..
(1996);
The early entry of Al into cells of intact soybean roots. A comparison of three developmental
root regions using secondary ion mass spectrometry imaging.
Plant Physiol..
112
1289-1300
33
Lazof, D. B.,, Goldsmith, J. G.,, and Linton, R. W..
(1997);
The in situ analysis of intracellular aluminum in plants.
Prog. Bot..
58
112-149
34 Lewis, P. R., and Knight, D. P.. (1977)
General cytochemical methods. Staining methods for sectioned material. Practical Methods in Electron Microscopy. Glauert, A. M., ed. Amsterdam; Elsevier/North-Holland
pp. 77-135
35
Lindberg, S., and Griffiths, G..
(1993);
Aluminium effects on ATPase activity and lipid composition of plasma membranes in
sugar beet roots.
Journal of Experimental Botany.
44 (267)
1543-1550
36
Loewus, F. A., and Loewus, M. W..
(1983);
myo-Inositol: its biosynthesis and metabolism.
Ann Rev Plant Physiol.
34
137-1161
37
Llugany, M.,, Massot, N.,, Wissemeier, A. H.,, Poschenrieder, C.,, Horst, W. J.,,
and Barceló, J..
(1994);
Aluminium tolerance of maize cultivars as assessed by callose production and root
elongation.
Z. Pflanzenernähr. Bodenk..
157
447-451
38
Llugany, M.,, Poschenrieder, C.,, and Barceló, J..
(1995);
Monitoring of aluminium-induced inhibition of root elongation in four maize cultivars
differing in tolerance to induced and proton toxicity.
Physiología Plantarum.
93
265-271
39 Marty, F.. (1997)
The Biogenesis of vacuoles: insights from microscopy. The plant vacuole; In Advances in Botanical research. Leigh, R. A. and Sanders, D.,
eds.; Callow, J. A., ed. California and London; Academic Press pp. 1-33
40 Marschner, H.. (1986) Mineral nutrition of higher plants. London; Academic Press
pp. 1-674
41 Martinoia, E., and Ratajczak, R.. (1997)
Transport of organic molecules across the tonoplast. The Plant Vacuole; Advances in Botanical Research. Leigh, R. A. and Sanders, D.,
eds.; Callow, J. A., ed. California and London; Academic Press pp. 366-390
42
Matile, P., and Moore, H..
(1968);
Vacuolation: origin and development of the lysosomal apparatus in root tip cells.
Planta (Berlin).
80
159-175
43 Matile, P.. (1997)
The vacuole and cell senescence. The Plant Vacuole; Advances in Botanical Research. Leigh, R. A. and Sanders, D.,
eds.; Callow J. A., ed. California and London; Academic Press pp. 87-107
44
Meharg, A. A..
(1994);
Opinion: Integrated tolerance mechanisms: constitutive and adaptive plant responses
to elevated metal concentrations in the environment.
Plant Cell and Environment.
17
989-993
45
Mentré, P., and Escaig, F..
(1988);
Localization of cations by pyroantimonate. I. Influence of fixation on distribution
of calcium and sodium. An approach by analytical ion microscopy.
J. of Histochem. Cytochem..
36 (1)
49-54
46
Mentré, P., and Halpern, S..
(1988);
Localization of cations by pyroantimonate. II. Electron probe microanalysis of calcium
and sodium in skeletal muscle of mouse.
J. of Histochem. Cytochem..
36 (1)
55-64
47
Mikus, M.,, Bobak, M.,, and Lux, A..
(1992);
Structure of protein bodies and elemental composition of phytin from dry germ of maize
(Zea mays L.).
Bot. Acta.
105
26-33
48 Mikus, M.,, Lux, A.,, Crans, D. C.,, Shi, P. K.,, and Kristin, J.. (1995)
Comparison of phytate in radicle, plumule, scutellum and endosperm of Zea mays and Zea diploperennis seeds. Structure and Function of Roots. Baluska, F., Ciamporova, M., Gasparikova, O., Barlow,
and P. W., eds. Dordrecht, Boston, London; Kluwer Academic Publishers pp. 175-180
49
Miyasaka, S. C.,, Buta, J. G.,, Howell, R. K.,, and Foy, C. D..
(1991);
Mechanism of aluminium tolerance in snapbeans.
Plant Physiol..
96
737-743
50
Moog, P. R..
(1998);
Flooding tolerance of Carex species. I. Root structure.
Planta.
207
189-198
51
Mueller, W. C.,, Morgham, A. T.,, and Roberts, E. M..
(1994);
Immunocytochemical localization of callose in the vascular tissue of tomato and cotton
plants infected with Fusarium oxysporum.
.
Can. J. Bot..
72
505-509
52
Nebenführ, A.,, Frohlick, J. A.,, and Staehelin, A..
(2000);
Redistribution of golgi stacks and other organelles during mitosis and cytokinesis
in plant cells.
Plant Physiol..
124
135-152
53 Oud, J. L., and Nanninga, N.. (1995)
The relation between cell size, chromosome length and the orientation of chromosomes
in dividing root cortex cells. Structure and Function of Roots. Baluska, F., Ciamporova, M., Gasparikova, O., and
Barlow, P. W., eds. Dordrecht, Boston, London; Kluwer Academic Publishers pp. 33-39
54
Paris, N.,, Stanley, M.,, Jones, R. L.,, and Rogers, J. C..
(1996);
Plant cells contain two funtionally distinct vacuolar compartments.
Cell.
85
563-572
55
Parker, D. R.,, Zelazny, L. W.,, and Kinraide, T. B..
(1987);
Improvements to the program GEOCHEM.
Soil Sci. Soc. Am. J..
51
488-491
56
Pellet, D. M.,, Grunes, D. L.,, and Kochian, L. V..
(1995);
Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.).
Planta.
196
788-795
57
Pellet, D. M.,, Papernik, L. A.,, and Kochian, L. V..
(1996);
Multiple aluminum-resistance mechanisms in wheat. Roles of root apical phosphate and
malate exudation.
Plant Physiol..
112
591-597
58
Piñeros, M. A., and Kochian, L. V..
(2001);
A patch-clamp study on the physiology of aluminum toxicity and aluminum tolerance
in maize: identification and characterization of Al3+ -induced anion channels.
Plant Physiology.
125
292-305
59
Rengel, Z..
(1992 a);
Role of calcium in aluminium toxicity.
New Phytol..
121
499-513
60
Rengel, Z..
(1992 b);
Disturbance of cell Ca2+ homeostasis as a primary trigger of Al toxicity syndrome.
Plant Cell and Environment.
15
931-938
61
Reynolds, E. S..
(1963);
The use of lead citrate at high pH as an electron opaque stain in electron microscopy.
J. Cell Biol..
17
208-210
62
Rincón, M., and González, R. A..
(1992);
Aluminum partitioning in intact roots of aluminum-tolerant and aluminum-sensitive
wheat (Triticum aestivum L.) cultivars.
Plant Physiol..
99
1021-1028
63
Ryan, P. R.,, Ditomaso, J. M.,, and Kochian, L. V..
(1993);
Aluminum toxicity in roots: an investigation of spatial sensitivity and the role of
the root cap.
J. Exp. Bot..
44
437-446
64
Ryan, P. R.,, Delhaize, E.,, and Jones, D. L..
(2001);
Function and mechanism of organic anion exudation from plant roots.
Annu. Rev. Plant Physiol. Plant Mol. Biol..
25
527-560
65
Salt, D. E., and Wagner, G. J..
(1993);
Cadmium transport across tonoplast of vesicles from oat roots.
Journal of Biological Chemistry.
268
297-302
66
Salt, D. E.,, Smith, R. D.,, and Raskin, I..
(1998);
Phytoremediation.
Ann. Rev. Plant Physiol. Plant Mol. Biol..
49
643-668
67
Sivaguru, M., and Horst, W. J..
(1998);
The distal part of the transition zone is the most aluminum-sensitive apical root
zone of maize.
Plant Physiology.
116
155-163
68
Sivaguru, M.,, Baluska, F.,, Volkmann, D.,, Felle, H. H.,, and Horst, W. J..
(1999);
Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects
on the distal part of the transition zone.
Plant Physiology.
119
1073-1082
69
Sivaguru, M.,, Fijiwara, T.,, Samaj, J.,, Baluska, F.,, Yang, Z.,, Osawa, H.,,
Maeda, T.,, Mori, T.,, Volkmann, D.,, and Matsumoto, H..
(2000);
Aluminum-induced 1-3-β-D-glucan inhibits cell-to-cell trafficking of molecules through
plasmodesmata.
A New Mechanism of Aluminum Toxicity in Plants.
124
991-1005
70
Spurr, A. R..
(1969);
A low-viscosity epoxy resin embedding medium for electron microscopy.
J. Ultrastr. Res..
26
31-43
71
Strange, J., and Macnair, R..
(1991);
Evidence for a role for the cell membrane in copper tolerance of Mimulus guttatus Fischer ex DC.
New Phytol..
119
383-388
72 Taylor, G. J.. (1988)
The physiology of aluminum phytotoxicity. Metal Ions in Biological Systems. Aluminum and its Role in Biology. Sigel, H.and
Sigel, A., eds. New York; Marcel Dekker Inc. pp. 123-163
73
Tice, K. R.,, Parker, D. R.,, and Demason, D. A..
(1992);
Operationally defined apoplastic and symplastic aluminum fractions in root tips of
aluminum-intoxicated wheat.
Plant Physiol..
100
309-318
74 van Steveninck, R. F. M.,, Babare, A.,, Fernando, D. R.,, and van Steveninck,
M. E.. (1995)
The binding of zinc, but not cadmium, by phytic acid in roots of crop plants. Structure and Function of Roots. Baluska, F., Ciamporova, M., Gasparikova, O., and
Barlow, P. W., eds. Dordrecht, Boston, London; Kluwer Academic Publishers pp. 319-326
75
Vázquez, M. D.,, Poschenrieder, Ch.,, and Barceló, J..
(1992);
Ultrastructural effects and localization of low cadmium concentrations in bean roots.
New Phytologist.
120
215-226
76
Vázquez, M. D.,, Poschenrieder, Ch.,, Barceló, J.,, Baker, A. J. M.,, Hatton,
P.,, and Cope, G. H..
(1994);
Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens.
.
J. and C. Presl. Bot. Acta.
107
187-270
77
Vázquez, M. D.,, Poschenrieder, Ch.,, Corrales, I.,, and Barceló, J..
(1999);
Change in apoplastic aluminum during the initial growth response to aluminum by roots
of a tolerant maize variety.
Plant Physiology.
119
435-444
78 Vázquez, M. D.. (2000)
Confocal laser scanning microscopy applied to root tips of Al-treated maize plants:
considerations about aluminum localization by fluorescent staining. Jornadas de Microscopía Confocal a la UAB. Servei de Microscòpia Electrónica. Bellaterra. Barcelona;
Universitat Autónoma de Barcelona. Abstract Book pp. 44-45
79 Verkleij, J. A. C., and Schat, H.. (1990)
Ecophysiology of metal uptake by tolerant plants. Heavy Metal Tolerance in Plants: Evolutionary Aspects. Shaw, A. J., ed. Boca Raton,
FL; CRC Press pp. 179-193
80
Wink, M..
(1993);
The plant vacuole: a multifunctional compartment.
Journal of Experimental Botany.
44
231-246
81
Wissemeier, A H.,, Klotz, F.,, and Horst, W. J..
(1987);
Aluminium induced callose synthesis in roots of soybean (Glycine max L.).
J. Plant Physiol..
129
487-492
82
Wissemeier, A. H.,, Difning, A.,, Hergenröder, A.,, Horst, W. J.,, and Mix-Wagner,
G..
(1992);
Callose formation as parameter for assessing genotypical plant tolerance of aluminium
and manganese.
Plant and Soil.
146
67-75
83
Wissemeier, A. H., and Horst, W J..
(1995);
Effect of calcium supply on aluminium-induced callose formation, its distribution
and persistence in roots of soybean (Glycine max [L.]).
J. Plant Physiol..
129
487-492
84 Woolhouse, H. W.. (1983)
Toxicity and resistance in the responses of plants to metals. Physiological Plant Ecology. III. Responses to the Chemical and Biological Environment.
Encyclopaedia of Plant Physiology New Series, Vol. 12 C. Lange, O. L., Nobel, P. S.,
Osmond, C. B., and Ziegler, H., eds. Berlin; Springer Verlag pp. 245-300
85
Zhang, G. C., and Taylor, G. J..
(1989);
Kinetics of aluminum uptake by excised roots of aluminum-tolerant and aluminum-sensitive
cultivars of Triticum aestivum L.
Plant Physiol..
91
1094-1099
86
Zhang, G. C., and Taylor, G. J..
(1993);
Callose synthesis induced by aluminum stress.
Plant Physiol..
102 (suppl. 1)
174
87
Zhang, G. C.,, Hoddinott, J.,, and Taylor, G. J..
(1994);
Characterization of 1,3-β-D-glucan (callose) synthesis in roots of Triticum aestivum in response to aluminum toxicity.
J. Plant Physiol..
144
229-234
88
Zhao, F. J.,, Shen, Z. G.,, and McGrath, S. P..
(1998);
Solubility of zinc and interactions between zinc and phosphorus in the hyperaccumulator
Thlaspi caerulescens.
.
Plant Cell and Environment.
21
108-114
M. D. Vázquez
Apdo. de Correos 255 08290 Cerdanyola del Vallès, Barcelona Spain
Email: mariadolores.vazquez@uab.es
Section Editor: W. B. Frommer